Section A (40 marks)

1. This is a question on polynomials. Let $f(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$.
(a) If a is a root of the equation $f(x)=0$, find a^{7}. (2 marks)
(b) Write down, in polar form, the six distinct roots of the equation $f(x)=0$. (1 mark)
(c) Find the remainder when $f\left(x^{7}\right)$ is divided by $f(x)$. (4 marks)
2. This is a question on the properties of definite integrals.
(a) If $f(x)$ is an integrable periodic function with period p, prove that $\int_{0}^{p} f(x) d x=\int_{\frac{-p}{2}}^{\frac{p}{2}} f(x) d x$ and $\int_{a}^{a+p} f(x) d x=\int_{0}^{p} f(x) d x$. (4 marks)
(b) Show that if $g(x)$ is an integrable periodic odd function with period p, then $\int_{a}^{a+k p} g(x) d x=0$, where k is a positive integer. (3 marks)
3. This is a question on the application of definite integration. Let there be a region bounded by the curve $y=x \ln (x)$, the straight line $x=e$, and the x-axis.
(a) Find the area of the bounded region. (3 marks)
(b) Find the volume of the solid of revolution when the bounded region is revolved about the x-axis. (4 marks)
4. This is a question on sequences. Let $a_{1}=\frac{3}{2}, a_{2}=\frac{7}{12}$ and $6 a_{n+2}=5 a_{n+1}-a_{n}$ for all positive integers n.
(a) Using mathematical induction, prove that $a_{n}=\frac{1}{2^{n}}+\frac{1}{3^{n-1}}$ for any positive integer n. (4 marks)
(b) Does there exist a positive integer m such that $\sum_{k=1}^{m} a_{k}>3$? Explain your answer. (3 marks)
5. This is a question on sequences. Let $S=\sum_{k=1}^{n}\left(1+\frac{1}{k}\right)$, where $n \in \mathbf{N} \backslash\{1\}$.
(a) Using A.M. \geq G.M., or otherwise, prove that $\frac{2 n-S}{n-1} \geq\left(\frac{1}{n}\right)^{\frac{1}{n-1}}$. (3 marks)
(b) Prove that $2 n-(n-1) n^{\frac{1}{1-n}} \geq S \geq n(n+1)^{\frac{1}{n}}$. (3 marks)
6. This is a question on continuity and differentiability. It is given that
$f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function satisfying $f(\pi)=-1$ and $f^{\prime}(\pi)=3$. Let k be a real constant and $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
g(x)= \begin{cases}f(x)+x+k & \text { when } x \leq \pi \\ \frac{\sin x}{x-\pi} & \text { when } x>\pi\end{cases}
$$

Suppose that $g(x)$ is continuous at $x=\pi$.
(a) Find k. (2 marks)
(b) Is $g(x)$ differentiable at $x=\pi$? Explain your answer. (4 marks)

END OF SECTION A

Section B (60 marks)

7. This is a question on graph plotting. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=\frac{10(x+2)}{x^{2}+5}$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. (2 marks)
(b) Solve $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$. (2 marks)
(c) Find the relative extreme point(s) and point(s) of inflexion of the graph of $y=f(x)$. (3 marks)
(d) Find the asymptote(s) of $y=f(x)$. (3 marks)
(e) Sketch the graph of $y=f(x)$. (3 marks)
(f) Sketch the graph of $y=f(|x-1|)$. (2 marks)
8. This is a question on properties of functions and differentiability. It is given that $f: \mathbf{R} \rightarrow \mathbf{R}$ satisfies the following conditions:
(1) $f(x+y)=f(x) f(y)-f(x)-f(y)+2$ for all $x, y \in \mathbf{R}$;
(2) there exists a unique real number r such that $f(r)=2$.
(a) Prove that $f(0)=2$. (3 marks)
(b) Is f a injective function? Explain your answer. (3 marks)
(c) Is f a surjective function? Explain your answer. (3 marks)
(d) Suppose that $\lim _{h \rightarrow 0} \frac{f(h)-2}{h}=12$.
(i) Prove that f is differentiable everywhere and $f^{\prime}(x)=12 f(x)-12$ for all $x \in \mathbf{R}$. (3 marks)
(ii) By differentiating $e^{-12 x} f(x)$, find $f(x)$. (3 marks)
9. This is a question on definite integral and limits of sequences.
(a) For each positive integer n, let $I_{n}=\int_{0}^{\pi} e^{-x}(\pi-x)^{n} d x$.
(i) Evaluate I_{1}. (2 marks)
(ii) Express I_{n+1} in terms of I_{n}. (1 mark)
(iii) Prove that $\sum_{k=0}^{n}(-1)^{k} \frac{\pi^{k}}{k!}=(-1)^{n} \frac{I_{n}}{n!}+e^{-\pi}$. (3 marks)
(b) For each positive integer n, let $a_{n}=\frac{\pi^{n}}{n!}$.
(i) Prove that $a_{n+1}<a_{n}$ for all $n>3$. (2 marks)
(ii) Using (b)(i), or otherwise, prove that $\lim _{n \rightarrow \infty} a_{n}$ exists. Also evaluate $\lim _{n \rightarrow \infty} a_{n}$. (3 marks)
(c) Using (a)(iii), evaluate $\sum_{k=0}^{\infty}(-1)^{k} \frac{\pi^{k}}{k!}$. (4 marks)
10. This is a question on Mean Value Theorem.
(a) Denote the closed interval $[1,2]$ and the open interval $(1,2)$ by \mathbf{I} and \mathbf{J} respectively.
(i) Assume that real-valued functions p and q are continuous on \mathbf{I} and $q(x)>$ 0 for all $x \in \mathbf{J}$. Define $h(x)=\int_{1}^{2} q(t) d t \int_{1}^{x} p(t) q(t) d t-\int_{1}^{2} p(t) q(t) d t \int_{1}^{x} q(t) d t$ for all $x \in \mathbf{I}$.
(1) Find $h^{\prime}(x)$ for all $x \in \mathbf{J}$. (1 mark)
(2) Using the result of $(\mathrm{a})(\mathrm{i})(1)$ and Mean Value Theorem to prove that there exists $\beta \in \mathbf{J}$ such that $\int_{1}^{2} p(x) q(x) d x=p(\beta) \int_{1}^{2} q(x) d x$. (4 marks)
(ii) Let f and g be real-valued functions such that f^{\prime} and g^{\prime} are continuous on \mathbf{I} and $f^{\prime}(x)>0$ for all $x \in \mathbf{J}$. Prove that there exists $c \in \mathbf{J}$ such that $\int_{1}^{2} f(x) g^{\prime}(x) d x=f(2) g(2)-f(1) g(1)-g(c)(f(2)-f(1)) .(4$ marks $)$ (b)
(i) Find $\frac{d}{d x} \cos x^{100} \cdot$ (1 mark)
(ii) Using (a)(ii), prove that $\left|\int_{1}^{2} \sin x^{100} d x\right| \leq \frac{1}{50}$. (5 marks)
11. This is a question on series and sequences.
(a) Let $\lambda>1$. Prove that $(1+x)^{\lambda}>1+\lambda x$ for any $x>0$. (3 marks)
(b) For any positive integer n, define $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ and $b_{n}=\left(1+\frac{1}{n}\right)^{n+1}$.
(i) Using (a), or otherwise, prove that $a_{n+1}>a_{n}$. (2 marks)
(ii) Prove that $\frac{b_{n}}{b_{n+1}}=\left(1+\frac{1}{n(n+2)}\right)^{n+1}\left(\frac{n+1}{n+2}\right)>1$. $(3$ marks $)$
(iii) Using (b)(i) and (b)(ii)(2), prove that both $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$. (2 marks)
(iv) Find $\prod_{k=1}^{n} a_{k}$ and $\prod_{k=1}^{n} b_{k}$. Hence prove that $(n+1)^{n+1}>n!e^{n}>$ $(n+1)^{n}$, where $e=\lim _{n \rightarrow \infty} a_{n}$. (5 marks)

END OF PAPER

